Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
2.
Bioorg Med Chem ; 100: 117615, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342079

RESUMO

sTF (sialyl-Thomsen-Friedenreich) is a type of tumor-associated carbohydrate antigens (TACAs) and is highly expressed in various human malignancies. To validate if sTF could be a valuable molecular target for future cancer vaccine development, in this work the sTF antigen was prepared by adopting a strategy combining chemical and enzymatic methods, and then was covalently conjugated to a carrier protein, CRM197. The preliminary immunological evaluation, performed on BALB/c mice, revealed that the sTF-CRM197 conjugate elicited high titers of specific IgG antibodies. FACS experiments showed that the antisera induced by sTF-CRM197 conjugate could specifically recognize and bind to sTF-positive cancer cells T-47D. Furthermore, the conjugate mediated effective and specific antibody-mediated complement-dependent cytotoxicity (CDC).


Assuntos
Anticorpos , Antígenos Glicosídicos Associados a Tumores , Animais , Camundongos , Humanos , Antígenos Glicosídicos Associados a Tumores/química , Proteínas de Bactérias/química
3.
Glycobiology ; 33(11): 879-887, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847609

RESUMO

Protein-carbohydrate interactions are essential in maintaining immune homeostasis and orchestrating inflammatory and regulatory immune processes. This review elucidates the immune interactions of macrophage galactose-type lectin (MGL, CD301) and Tn carbohydrate antigen. MGL is a C-type lectin receptor (CLR) primarily expressed by myeloid cells such as macrophages and immature dendritic cells. MGL recognizes terminal O-linked N-acetylgalactosamine (GalNAc) residue on the surface proteins, also known as Tn antigen (Tn). Tn is a truncated form of the elongated cell surface O-glycan. The hypoglycosylation leading to Tn may occur when the enzyme responsible for O-glycan elongation-T-synthase-or its associated chaperone-Cosmc-becomes functionally inhibited. As reviewed here, Tn expression is observed in many different neoplastic and non-neoplastic diseases, and the recognition of Tn by MGL plays an important role in regulating effector T cells, immune suppression, and the recognition of pathogens.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Galactose , Antígenos Glicosídicos Associados a Tumores/química , Macrófagos/metabolismo , Lectinas Tipo C/metabolismo , Imunidade , Polissacarídeos
4.
J Am Chem Soc ; 145(24): 13027-13037, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279388

RESUMO

Mucin expression and glycosylation patterns on cancer cells differ markedly from healthy cells. Mucin 1 (MUC1) is overexpressed in several solid tumors and presents high levels of aberrant, truncated O-glycans (e.g., Tn antigen). Dendritic cells (DCs) express lectins that bind to these tumor-associated carbohydrate antigens (TACAs) to modulate immune responses. Selectively targeting these receptors with synthetic TACAs is a promising strategy to develop anticancer vaccines and to overcome TACA tolerance. In this work, we prepared, via a solid phase peptide synthesis approach, a modular tripartite vaccine candidate, incorporating a high-affinity glycocluster based on a tetraphenylethylene scaffold, to target the macrophage galactose-type lectin (MGL) on antigen presenting cells. MGL is a C-type lectin receptor that binds Tn antigens and can route them to human leukocyte antigen class II or I, making it an attractive target for anticancer vaccines. Conjugation of the glycocluster to a library of MUC1 glycopeptides bearing the Tn antigen is shown to promote uptake and recognition of the TACA by DCs via MGL. In vivo testing revealed that immunization with the newly designed vaccine construct bearing the GalNAc glycocluster induced a higher titer of anti-Tn-MUC1 antibodies compared to the TACAs alone. Additionally, the antibodies obtained bind a library of tumor-associated saccharide structures on MUC1 and MUC1-positive breast cancer cells. Conjugation of a high-affinity ligand for MGL to tumor-associated MUC1 glycopeptide antigens has a synergistic impact on antibody production.


Assuntos
Mucina-1 , Vacinas , Humanos , Mucina-1/química , Galactose/metabolismo , Glicopeptídeos/química , Antígenos Glicosídicos Associados a Tumores/química , Lectinas Tipo C/metabolismo , Células Dendríticas , Macrófagos/metabolismo
5.
J Org Chem ; 88(9): 5554-5562, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023470

RESUMO

Despite the interesting potential of tumor-associated carbohydrate antigens (TACAs) dimLea and LebLea to develop anticancer immunotherapies, little research has been conducted on these antigens. In our quest to discover fragments of these TACAs that could be targeted for the development of anticancer therapeutics, we report the synthesis of eight tri- to pentasaccharide fragments of these oligosaccharides. Unforeseen synthetic challenges are reported such as the incompatibility of a bromoalkyl glycoside in the reduction conditions needed to reduce a trichloroacetamide, the mismatched reactivities in a 2 + 1 synthetic strategy, and the surprising greater reactivity of a C-4 GlcNAc hydroxyl group versus that of the galactosyl OH-3 in the selective glycosylation of a trisaccharide diol. The desired final compounds were eventually obtained following a stepwise approach as nonyl or 9-aminononyl glycosides after one-step deprotection reactions in dissolving metal conditions. The 9-aminononyl glycosides will be conjugated to carrier proteins and the nonyl pentasaccharide glycoside will be used as a soluble inhibitor in binding experiments. In contrast, the nonyl tetrasaccharide glycosides are poorly soluble in water and their use in biochemical experiments will be limited.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Oligossacarídeos , Oligossacarídeos/química , Antígenos Glicosídicos Associados a Tumores/química , Glicosilação , Glicosídeos , Trissacarídeos
6.
Chem Soc Rev ; 52(10): 3353-3396, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070256

RESUMO

This review highlights the recent development in the use of carriers of increasing simplicities and versatile chemical ligation processes leading to synthetic vaccine candidates against tumor-associated carbohydrate antigens (TACAs). After briefly covering their structures, functions, occurrence, and biosynthesis, an overview of common conjugation chemistry is described with an emphasis on the versatile alkenyl glycosides as starting materials toward glycoconjugate syntheses. This is followed by a successive description of the numerous scaffolds and carriers used to progressively improve and simplify glycovaccine formulations. Throughout a systematic investigation of the various architectures involved, a critical description of the basic principles discovered en route to effective immune responses is disclosed wherein it is found that size, shape, densities, and carriers are all key factors involved towards successful vaccines.


Assuntos
Vacinas Anticâncer , Vacinas Anticâncer/química , Antígenos Glicosídicos Associados a Tumores/química , Vacinas Sintéticas/química , Glicoconjugados/química , Glicosídeos
7.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233358

RESUMO

Lung cancer is the first leading cause of cancer-related deaths in the world. Aberrant glycosylation in lung tumors leads to the expression of tumor-associated carbohydrate structures, such as the Tn antigen, consisting of N-acetyl-galactosamine (GalNAc) linked to a serine or threonine residue in proteins (α-GalNAc-O-Ser/Thr). The Tn antigen can be recognized by the Macrophage Galactose/GalNAc lectin (MGL), which mediates various immune regulatory and tolerogenic functions, mainly by reprogramming the maturation of function of dendritic cells (DCs). In this work, we generated two different Tn-expressing variants from the Lewis-type lung murine cancer cell line LL/2, which showed different alterations in the O-glycosylation pathways that influenced the interaction with mouse MGL2 and the immunomodulatory properties of DCs. Thus, the identification of the biological programs triggered by Tn+ cancer cells might contribute to an improved understanding of the molecular mechanisms elicited by MGL-dependent immune regulatory circuits.


Assuntos
Galactose , Neoplasias Pulmonares , Animais , Antígenos Glicosídicos Associados a Tumores/química , Galactosamina , Lectinas , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Serina , Treonina
8.
J Am Chem Soc ; 143(46): 19606-19613, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766768

RESUMO

Most proteins perform their functions in cells. How the cellular environment modulates protein interactions is an important question. In this work, electrostatic interactions between protein charges were studied using in-cell nuclear magnetic resonance (NMR) spectroscopy. A total of eight charge pairs were introduced in protein GB3. Compared to the charge pair electrostatic interactions in a buffer, five charge pairs in cells displayed no apparent changes whereas three pairs had the interactions weakened by more than 70%. Further investigation suggests that the transfer free energy is responsible for the electrostatic interaction modulation. Both the transfer free energy of the folded state and that of the unfolded state can contribute to the cellular environmental effect on protein electrostatics, although the latter is generally larger (more negative) than the former. Our work highlights the importance of direct in-cell studies of protein interactions and thus protein function.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Escherichia coli/citologia , Eletricidade Estática , Termodinâmica
9.
Chem Commun (Camb) ; 57(86): 11382-11385, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34647563

RESUMO

We report the first synthesis and immunological evaluation of a new glycoconjugate design based on streamlined saponin adjuvants and the Tn carbohydrate antigen. While the novel synthetic constructs induced moderate antibody responses in mice, the versatile chemical platform is amenable to further structure-activity optimizations for the development of self-adjuvanting glycoconjugate cancer vaccines.


Assuntos
Adjuvantes Imunológicos/química , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados/química , Saponinas/química , Animais , Formação de Anticorpos , Vacinas Anticâncer/química , Carboidratos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Mol Med (Berl) ; 99(8): 1115-1123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33904933

RESUMO

Cancer-associated antigens are not only a good marker for monitoring cancer progression but are also useful for molecular target therapy. In this study, we aimed to generate a monoclonal antibody that preferentially reacts with colorectal cancer cells relative to noncancerous gland cells. We prepared antigens composed of HT-29 colorectal cancer cell lysates that were adsorbed by antibodies to sodium butyrate-induced enterocytically differentiated HT-29 cells. Subsequently, we generated a monoclonal antibody, designated 12G5A, which reacted with HT-29 colon cancer cells, but not with sodium butyrate-induced differentiated HT-29 cells. Immunohistochemical staining revealed 12G5A immunoreactivity in all 73 colon cancer tissue specimens examined at various degrees, but little or no immunoreactivity in noncancerous gland cells. Notably, high 12G5A immunoreactivity, which was determined as more than 50% of colon cancer cells intensively stained with 12G5A antibody, exhibited significantly higher association with a poor overall survival rate of patients with colorectal cancer (P = 0.0196) and unfavorable progression-free survival rate of patients with colorectal cancer (P = 0.0418). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, si-RNA silencing analysis, enzymatic deglycosylation, and tunicamycin treatment revealed that 12G5A recognized the glycosylated epitope on annexin A2 protein. Our findings indicate that 12G5A identified a cancer-associated glycosylation epitope on annexin A2, whose expression was related to unfavorable colorectal cancer behavior. KEY MESSAGE: • 12G5A monoclonal antibody recognized a colorectal cancer-associated epitope. • 12G5A antibody recognized the N-linked glycosylation epitope on annexin A2. • 12G5A immunoreactivity was related to unfavorable colorectal cancer behavior.


Assuntos
Anexina A2/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Biomarcadores Tumorais , Neoplasias Colorretais/etiologia , Sequência de Aminoácidos , Anexina A2/química , Anexina A2/metabolismo , Anticorpos Monoclonais/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Epitopos/imunologia , Imunofluorescência , Glicosilação , Humanos , Imuno-Histoquímica , Prognóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise de Sobrevida
11.
Org Biomol Chem ; 19(11): 2448-2455, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33645601

RESUMO

MUC1 glycopeptides are attractive antigens for anti-cancer vaccine development. One potential drawback in using the native MUC1 glycopeptide for vaccine design is the instability of the O-glycosyl linkage between the glycan and the peptide backbone to glycosidase. To overcome this challenge, a MUC1 glycopeptide mimic has been synthesized with the galactose-galactosamine disaccharide linked with threonine (Thomsen-Friedenreich or Tf antigen) through an unnatural ß-glycosyl bond. The resulting MUC1-ß-Tf had a much-enhanced stability toward a glycosidase capable of cleaving the glycan from the corresponding MUC1 glycopeptide with the natural α-Tf linkage. The MUC1-ß-Tf was subsequently conjugated with a powerful carrier bacteriophage Qß. The conjugate induced high levels of IgG antibodies in clinically relevant human MUC1 transgenic mice, which cross-recognized not only the natural MUC1-α-Tf glycopeptide but also MUC1 expressing tumor cells, supporting the notion that a simple switch of the stereochemistry of the glycan/peptide linkage can be a strategy for anti-cancer vaccine epitope design for glycopeptides.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Vacinas Anticâncer/química , Glicopeptídeos/química , Mucina-1/química , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dissacarídeos/química , Desenho de Fármacos , Galactosamina/química , Galactose/química , Humanos , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Camundongos , Camundongos Transgênicos , Mucina-1/imunologia
12.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562270

RESUMO

Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Transportador de Glucose Tipo 1/metabolismo , Proteoma/análise , Software , Antígenos Glicosídicos Associados a Tumores/química , Apoptose , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/química , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas
13.
Biochemistry ; 60(7): 547-558, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560106

RESUMO

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 µM for monoglycosylated peptides to 0.6 µM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.


Assuntos
Lectinas Tipo C/química , Mucina-1/química , Sequência de Aminoácidos , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Calorimetria/métodos , Epitopos/metabolismo , Galactose , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Mucina-1/metabolismo , Ligação Proteica
14.
Glycobiology ; 31(1): 44-54, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501471

RESUMO

Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-ß. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-ß secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/genética , Técnicas de Cocultura , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/química , Ácidos Siálicos/química , Células Tumorais Cultivadas
15.
Carbohydr Res ; 498: 108155, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010570

RESUMO

The synthesis of MUC1 glycopeptides bearing modified tumor-associated carbohydrate antigens (TACAs) represents an effective strategy to develop potential antitumor vaccines that trigger strong immune response. In this context, we present herein the multistep synthesis of the triazole glycosyl amino acid Neu5Ac-α/ß2-triazole-6-ßGalNAc-ThrOH 1 as STn antigen analog, along with its assembly on the corresponding MUC1 peptide to give NAcProAsp [Neu5Acα/ß2-triazole-6-ßGalNAc]ThrArgProGlyOH 2. Despite interacting differently with SM3 monoclonal antibody, as shown by molecular dynamic simulations, this unnatural triazole glycopeptide may represent a promising candidate for cancer immunotherapy.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Glicopeptídeos/química , Glicopeptídeos/síntese química , Mucina-1/química , Triazóis/química , Técnicas de Química Sintética
16.
Eur J Med Chem ; 208: 112776, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896759

RESUMO

A set of fluorinated sialyl-T derivatives were efficiently synthesized using one-pot multi-enzyme (OPME) chemoenzymatic approach. The P. multocida α2-3-sialyltransferase (PmST1) involved in the synthesis showed extremely flexible donor and acceptor substrate specificities. These sialosides have been successfully investigated with stability towards Clostridium perfringens sialidase substrate specificity assay using 1H NMR spectroscopy. Hydrolysis studies monitored by 1H NMR clearly demonstrated that the fluorine substitution obviously reduced hydrolysis rate of Clostridium perfringens sialidase. To further investigate the fluorine influence, structure-dependent variation of sialoside-lectin binding was observed for MAL and different sialoside-immobilized surfaces. Subtle changes on the ligand of carbohydrate-binding protein were distinguished by SPR. These fluorinated sialyl-T derivatives obtained are valuable probes for further biological studies or antitumor drug design.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Hidrocarbonetos Fluorados/química , Trissacarídeos/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Sequência de Carboidratos , Hidrocarbonetos Fluorados/síntese química , Hidrólise , Neuraminidase/química , Especificidade por Substrato , Transferases/química , Trissacarídeos/síntese química
17.
J Med Chem ; 63(15): 8524-8533, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32672464

RESUMO

In many human carcinomas, mucin-1 (MUC1) is overexpressed and aberrantly glycosylated, resulting in the exposure of previously hidden antigens. This generates new patient antibody profiles that can be used in cancer diagnosis. In the present study, we focused on the MUC1-associated Tn antigen (α-O-GalNAc-Ser/Thr) and substituted the GalNAc monosaccharide by a glycomimic to identify MUC1-based glycopeptides with increased antigenicity. Two different glycopeptide libraries presenting the natural Tn antigen or the sp2-iminosugar analogue were synthesized and evaluated with anti-MUC1 monoclonal antibodies in a microarray platform. The most promising candidates were tested with healthy and breast cancer sera aiming for potential autoantibody-based biomarkers. The suitability of sp2-iminosugar glycopeptides to detect anti-MUC1 antibodies was demonstrated, and serological experiments showed stage I breast cancer autoantibodies binding with a specific unnatural glycopeptide with almost no healthy serum interaction. These results will promote further studies on their capabilities as early cancer biomarkers.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Autoanticorpos/imunologia , Neoplasias da Mama/imunologia , Mucina-1/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Autoanticorpos/sangue , Neoplasias da Mama/sangue , Feminino , Glicômica , Humanos , Mucina-1/química , Biblioteca de Peptídeos
18.
Anal Chem ; 92(13): 9230-9238, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510927

RESUMO

Tn-antigen (Tn), a single N-acetylgalactosamine (GalNAc) monosaccharide attached to protein Ser/Thr residues, is found on most cancer yet rarely detected in adult normal tissues as reported in previous studies, featuring it as one of the most distinctive signatures of cancer. Although it is important in cancer, Tn modified glycoproteins are not entirely clear owing to the lack of a suitable method. Knowing the Tn-glycosylated proteins and glycosylation sites are essential to the prevention, diagnosis, and therapy of cancer associated with the expression of Tn. Here, we introduce a method named EXoO-Tn for large-scale mapping of Tn-glycosylated proteins and glycosylation sites. EXoO-Tn utilizes solid-phase immobilization of proteolytic peptides of proteins, which modifies Tn by glycosyltransferase C1GalT1 with isotopically labeled UDP-Gal(13C6), to tag and convert Tn to Gal(13C6)-Tn, which gives rise to a unique glycan mass. The exquisite Gal(13C6) modified Tn are then recognized by a human-gut-bacterial enzyme, OpeRATOR, and released at the N-termini of the Gal(13C6)-Tn-occupied Ser/Thr residues from immobilized peptides to yield site-containing glycopeptides. The effectiveness of EXoO-Tn was benchmarked by analyzing Jurkat cells, where 947 Tn-glycosylation sites from 480 glycoproteins were mapped. The EXoO-Tn was further applied to the analysis of pancreatic cancer sera, where Tn-glycoproteins were identified. Given the significance of Tn in cancer, EXoO-Tn is anticipated to have broad translational and clinical utilities.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Glicopeptídeos/análise , Glicoproteínas/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Galactosiltransferases/metabolismo , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Glicosilação , Humanos , Marcação por Isótopo , Células Jurkat , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Mapeamento de Peptídeos
19.
Glycoconj J ; 37(4): 457-470, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367478

RESUMO

The Thomsen-Friedenreich-antigen, Gal(ß1-3)GalNAc(α1-O-Ser/Thr (TF-antigen), is presented on the surface of most human cancer cell types. Its interaction with galectin 1 and galectin 3 leads to tumor cell aggregation and promotes cancer metastasis and T-cell apoptosis in epithelial tissue. To further explore multivalent binding between the TF-antigen and galectin-3, the TF-antigen was enzymatically synthesized in high yields with GalNAc(α1-EG3-azide as the acceptor substrate by use of the glycosynthase BgaC/Glu233Gly. Subsequently, it was coupled to alkynyl-functionalized bovine serum albumin via a copper(I)-catalyzed alkyne-azide cycloaddition. This procedure yielded neo-glycoproteins with tunable glycan multivalency for binding studies. Glycan densities between 2 and 53 glycan residues per protein molecule were obtained by regulated alkynyl-modification of the lysine residues of BSA. The number of coupled glycans was quantified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a trinitrobenzene sulfonic acid assay. The binding efficiency of the neo-glycoproteins with human galectin-3 and the effect of multivalency was investigated and assessed using an enzyme-linked lectin assay. Immobilized neo-glycoproteins of all modification densities showed binding of Gal-3 with increasing glycan density. However, multivalent glycan presentation did not result in a higher binding affinity. In contrast, inhibition of Gal-3 binding to asialofetuin was effective. The relative inhibitory potency was increased by a factor of 142 for neo-glycoproteins displaying 10 glycans/protein in contrast to highly decorated inhibitors with only 2-fold increase. In summary, the functionality of BSA-based neo-glycoproteins presenting the TF-antigen as multivalent inhibitors for Gal-3 was demonstrated.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Glicoproteínas/síntese química , Ligação Competitiva , Proteínas Sanguíneas/genética , Catálise , Cobre/química , Reação de Cicloadição , Galectinas/genética , Glicoproteínas/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Técnicas Imunoenzimáticas/métodos , Soroalbumina Bovina/química , beta-Galactosidase/metabolismo
20.
Mol Immunol ; 120: 74-82, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32087569

RESUMO

To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galß1-3(4)GlcNAcß. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Sequência de Aminoácidos , Afinidade de Anticorpos , Especificidade de Anticorpos , Reações Antígeno-Anticorpo/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Sequência de Carboidratos , Epitopos/química , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Imunidade Inata , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação , Células Jurkat , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...